Skip to main content

Connecting fields

Quick Recipe

To connect field a in obj1 to field b in obj2, use this:
obj2 startScript: #b: when: {obj1. #aChanged}
Now for the whole story ...


A colleague of mine wanted to make a drop-down list, where the options are not just set once, but provided and updated by the application. So, of course, when the options in the application changes, the items of the list widget have to be set to this new value. Nothing easier than that, just write a handler:
    <on: optionsChanged in: app>
    listWidget items: app options
HOWEVER, he wanted to build this programmatically, not using a separate method. So, he easily came up with the following:
listWidget startScript : #items: withArguments: {app options} when: {app. #optionsChanged}
HOWEVER, this does not work as intended because the arguments to the script are evaluated only once, rather than every time the script is triggered. Well, this is what blocks are for, right? So this indeed works as intended:
listWidget startScript: [listWidget items: app options] when: {app. #optionsChanged}
HOWEVER, using blocks as long-lived scripts is discouraged. They're hard to identify in inspectors, hard to debug, etc. Alas, there seems to be no easy way around them. Or is there?


I've seen this problem a few times now, and the solution is so simple that I keep forgetting about it (which is why I spell it out here). This is how to wire the two fields:
listWidget startScript: #items: when: {app. #optionsChanged}
Doh! Where are the arguments? Well, the current value of a field is actually a parameter of the field change event (the previous value is the second one). Most of the time we just ignore it, since it's easy to get at the current value, but nevertheless, it's there. So, when #items: is triggered by the change event, its argument is the current value of the changed field, options. (This, btw, is a difference between #startScript: and #perform:, script arguments are optional, whereas method arguments are mandatory).

Of course, you can use the same technique in a regular method:
onOptionsChanged: newOptions
    <on: optionsChanged in: app>
    listWidget items: newOptions
But the earlier version at the top seems a bit more readable to me.


tao said…
Very Cool.
Thanks for going into this in detail. I did not quite get it in your earlier email. This is exactly what I was looking for.
Anonymous said…
Can you fix the post that has this text:

<on: optionsChanged in: app>

in it unencoded? Your atom feed doesn't parse as a result - see:

for details

Popular posts from this blog

Frontend-only Multi-Player. Unlimited Bandwidth. Or: What is, really?

A multi-player web app needs a backend, right? What if I told you, it doesn’t? Read on for how Croquet gets rid of servers. No, really . Instantaneous Shared Experiences  is how we describe Croquet on our website. And while that excellently describes What Croquet does, as Croquet's Chief Architect, I wanted to share a bit about How we do that. So I wrote a Twitter thread . Here it is in blog form, slightly extended. Click the animation above if it does not play automatically Croquet lets you build completely client-side multi-user web apps. Read that again. Client-side. Multi-user. No I’m not kidding. I built it, I know it works. 😁  Croquet apps run completely client-side: can be hosted as a static web site no server-side code needed no networking code needed  Croquet is literally virtualizing the server: Instead of running code on a server (or in a serverless function) we run it as a virtual machine (VM) on each client.  Croquet carefully controls the inputs to these identi

Deconstructing Floats: frexp() and ldexp() in JavaScript

While working on my  SqueakJS VM, it became necessary to deconstruct floating point numbers into their mantissa and exponent parts, and assembling them again. Peeking into the C sources of the regular VM, I saw they use the  frexp ()   and ldexp () functions found in the standard C math library. Unfortunately, JavaScript does not provide these two functions. But surely there must have been someone who needed these before me, right? Sure enough, a Google search came up with a few implementations. However, an hour later I was convinced none of them actually are fully equivalent to the C functions. They were imprecise, that is, deconstructing a float using frexp() and reconstructing it with ldexp() did not result in the original value. But that is the basic use case: for all float values, if [ mantissa , exponent ] = frexp (value) then value = ldexp ( mantissa , exponent ) even if the value is subnormal . None of the implementations (even the complex ones) really worked. I

Emulating Smalltalk-76

If you got as excited as me about Dan Ingalls' live Smalltalk-76 demo on an actual 1970's Xerox Alto, you may have wanted to try it yourself.  For one, you could try my Smalltalk-78 VM. Smalltalk-78 is a leaner version of Smalltalk-76 but very much identical in syntax semantics.  It is also possible to run the full Smalltalk-76 environment, and here is how: First, you need an emulator for the Alto computer. Ken Shiriff posted a nice piece on how to run ContrAlto on Windows . It is written in C# and I got it to work on my Mac using Mono. So here's a step-by-step: Install Mono from Download from Download this Smalltalk-76 disk image: Unzip both  and  in the same folder. In a terminal, change to the ContrAlto directory and run mono Contralto.exe .